
NetCodCCN: a Network Coding approach for
Content-Centric Networks

Jonnahtan Saltarin∗, Eirina Bourtsoulatze∗, Nikolaos Thomos† and Torsten Braun∗
∗University of Bern, Bern, Switzerland

†University of Essex, Colchester, United Kingdom
{saltarin,braun}@inf.unibe.ch, eirina.bourtsoulatze@gmail.com, nthomos@essex.ac.uk

Abstract—Content-Centric Networking (CCN) naturally sup-
ports multi-path communication, as it allows the simultaneous
use of multiple interfaces (e.g. LTE and WiFi). When multiple
sources and multiple clients are considered, the optimal set of
distribution trees should be determined in order to optimally
use all the available interfaces. This is not a trivial task, as
it is a computationally intense procedure that should be done
centrally. The need for central coordination can be removed by
employing network coding, which also offers improved resiliency
to errors and large throughput gains. In this paper, we propose
NetCodCCN, a protocol for integrating network coding in CCN.
In comparison to previous works proposing to enable network
coding in CCN, NetCodCCN permits Interest aggregation and
Interest pipelining, which reduce the data retrieval times. The
experimental evaluation shows that the proposed protocol leads
to significant improvements in terms of content retrieval delay
compared to the original CCN. Our results demonstrate that
the use of network coding adds robustness to losses and permits
to exploit more efficiently the available network resources. The
performance gains are verified for content retrieval in various
network scenarios.

I. INTRODUCTION

In the IP protocol, core of the current Internet architecture,
each packet is routed based on the location of the host to which
it is addressed. However, nowadays Internet users care more
about the content they want to obtain rather than where it is
stored. To address this mismatch, Jacobson et al. [1] proposed
Content-Centric Networking (CCN), a new communication
paradigm in which the importance is shifted from where the
content is located, to what the content is. In the CCN model,
the content is described by its name and the users demand
content with the help of Interest messages that contain the
name of the requested content. These Interests are transmitted
over the network until they reach a node holding a copy of
the content whose name matches that of the Interest message.
This node creates a Data message that contains a copy of the
requested content and sends it back to the requester. The Data
message follows the reverse path of that followed by the Interest
message. As the Data message is transmitted backwards to the
requester, intermediate nodes can store copies of it, so they
can reply to future Interests for the same content.

One of the advantages of CCN is that it allows clients to
exploit multiple paths in a native way. Clients can simultane-
ously transmit Interests over all their network interfaces (e.g.,
LTE and WiFi) to retrieve the content segments that comprise
the requested content. This leads to a better use of the network

resources and reduces the time needed to collect all the content
segments. However, when multiple clients are interested in
the same content (e.g., a popular video stream), and/or when
the content is distributed across multiple sources (e.g., in a
distributed storage system), the optimal content delivery rate is
only attained if the segments are delivered over the optimal set
of multicast trees [2]. This means that the Data and Interest
messages should be transmitted over these multicast trees. The
nodes need to know where they need to forward each Interest
to follow these multicast trees, which does not scale for large
and dynamic topologies. Furthermore, the computation of the
optimal set of multicast trees needs a central entity that is
aware of the network topology, which is hard to be done in
dynamic networks. An alternative solution to the computation
of the optimal multicast trees is to use network coding [3].
With network coding all the network nodes perform coding
operations on the received packets instead of just replicating
and forwarding them as in traditional networks. The receivers
decode the information when they receive a decodable set of
segments, i.e., as many linearly independent coded segments
as the number of source data segments.

The application of network coding in CCN has been explored
in [4] where an architecture called NC3N is introduced. In
this approach, Interests contain information about the content
segments available at the client, based on the approach proposed
in [5]. Nodes holding content segments that match the name
prefix of the Interest reply only if they can provide a network
coded content segment that is innovative to the client. However,
in the presence of multiple clients, (i) the aggregation of
Interests is problematic, since Interests for the same content seg-
ment from different clients contain different content availability
information; and (ii), when a client sends multiple Interests
in parallel to receive different content segments, it includes
the same information about the content that it already has.
This is undesirable as a node that has a matching content
segment will reply to these Interests with the same content
segment, that will be duplicated for the client. Inspired by [4],
CodingCache has been proposed in [6] which uses network
coding to replace the content segments in the cache of the
network nodes. Due to the increased content segment diversity
in the network, the cache hit rate is improved. However, this
approach suffers from the same drawbacks as the architecture
in [4]. In [7], the multicast delivery of network coded content
in Information-Centric Networks is optimized by finding the

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

evolution of the content segments that are stored in the network.
The drawback of this approach is that it does not scale well
with the number of network nodes, because it needs a central
entity that is aware of the network topology and the clients’
requests.

In this paper we propose NetCodCCN, a novel protocol that
enables network coding in CCN. Our proposed solution solves
the shortcomings of the approaches presented in [4] and [6].
Specifically, (i) we eliminate the need to include in the Interests
the information about the content available at the client, thus,
simplifying Interest aggregation; (ii) we allow nodes to keep
information about the content segments they have sent on each
face, reducing the number of duplicate segments; and (iii) we
allow clients to send multiple Interests in parallel, by modifying
the way in which the nodes process the Interest messages.

We have implemented NetCodCCN by making the necessary
changes to the CCNx [8] codebase, and performed experiments
to compare it to unmodified CCNx. Our results demonstrate that
NetCodCCN offers large gains in terms of the time needed to
retrieve the original content object. Moreover, it adds robustness
to losses and permits to exploit more efficiently the available
network resources in multi-source multicast scenarios. To the
best of our knowledge, this is the first practical implementation
that enables network coding in CCNx.

II. DATA RETRIEVAL IN CCN

We focus on content communication over wired networks
represented by directed acyclic graphs G = (V, E), where V
and E denote the set of network nodes and the set of links
connecting them, respectively. Each network consists of a set
of source nodes S that generate and/or store content objects,
a set of clients U that demand content objects and a set of
intermediate nodes R through which the content objects are
requested and transmitted. Hence, we have V = S ∪ U ∪R,
where every node v ∈ V is connected with its neighboring
nodes through a set of faces Fv .

In CCN, content objects are split into smaller segments that
fit into Data messages. Each segment is uniquely identified by
a name. We denote a content object as Cp = {cp,1, . . . , cp,N}
where N is the number of segments in Cp and p is the
name of the content object, which serves as a name prefix
for the segments. The name of each segment cp,n ∈ Cp

is generated by appending the segment id n to the content
object’s name p. For instance, the name of the segment cp,1
is /provider/videos/largevideo.h264/1, where
/provider/videos/largevideo.h264 is the name
prefix p and 1 is the segment id.

Each source s ∈ S stores content objects that can be
requested by the clients. A client u ∈ U that is interested
in a content object Cp = {cp,1, . . . , cp,N} should send a
set of Interest messages Ip = {ip,1, . . . , ip,N}, one for each
segment. These interests are sent over a set of faces Fp

u that
are configured to forward Interests for content with name prefix
p. The information about which faces a node can use to send
Interests for specific name prefixes is stored in the Forwarding
Information Base (FIB) table.

In CCN, each node v ∈ V has a cache, or Content Store (CS)
in CCN terminology, where segments that pass through the
node can be stored. These segments can be used later to reply
to Interests for segments with a matching name. Therefore,
a node v ∈ I ∪ S holding a copy of the segment cp,n in its
CS replies to any Interest ip,n. If the CS of node v does not
contain a segment matching the name of the Interest ip,n, the
node v first checks its Pending Interest Table (PIT), that keeps
track of the Interests forwarded by the node and all the faces
over which those Interests have arrived. If the node v finds in
its PIT an entry that matches the name in the Interest, it knows
that it has already forwarded ip,n and hence the segment cp,n
is expected. In this case, v does not forward ip,n again, but
only adds the face f over which the Interest has arrived to the
respective PIT entry. When the PIT does not have any entry
that matches the Interest ip,n, the node v forwards the Interest
to its neighboring nodes over the set of faces Fp

u configured
in its FIB and adds a corresponding entry to the PIT table.

Once the requested segment is found in the CS of an
intermediate node or in a source node, it is transmitted to
the client in a Data message over the reverse path of that
followed by the Interest. When a node v ∈ I ∪ U receives
a Data message with the segment cp,n over a face f , it first
checks its CS. If a segment with the same name exists, the
arrived segment cp,n is considered duplicated and it is not
transmitted further. If there is no matching segment in the CS,
the node checks its PIT for an entry that matches the name
of the segment cp,n. If there is no matching PIT entry, the
segment cp,n is considered unsolicited and it is discarded. If a
matching PIT entry exists, the segment is forwarded over all
the faces specified in the corresponding PIT entry. Additionally,
the segment cp,n may be added to the CS, according to the
caching policy.

III. TOWARDS NETWORK CODING ENABLED CCN

In this section we describe the benefits that network coding
can bring to CCN. First, we motivate the use of network coding
by presenting three scenarios in which CCN does not perform
efficiently. Then, we show how network coding can alleviate
the drawbacks of CCN in the mentioned scenarios, while also
bringing additional benefits.

A. Motivation

Nowadays, communication devices usually come with mul-
tiple network interfaces that can be used to gather content,
e.g., smart-phones usually have WiFi and 3G/LTE interfaces.
However, in the traditional host-centric networking, using
multiple interfaces in parallel to retrieve content is a difficult
task, as end-to-end connections need to be established for
each interface. In CCN, multipath content retrieval is naturally
supported, as the clients can distribute all the Interest messages
needed to retrieve a content object over all available faces.
However, there are some scenarios where CCN does not provide
efficient support for multipath content retrieval:

• Multi-source unicast: Let us consider the case illustrated
in Fig. 1a, where a client u1 is interested in a content object

Cp. Let us also consider that the N segments that compose Cp

are distributed across multiple sources S , such that each source
s ∈ S contains a subset Γs

p ⊂ Cp. In this case, the client and
the intermediate nodes need to select properly the face over
which they send the Interest for each segment, such that it
reaches the right source. This is done using the information
stored in the FIB table. However, keeping the FIB tables of
all the nodes updated for each segment of Cp does not scale
well, in particular in large networks and in the presence of
unreliable sources that can become available/unavailable at any
moment.

• Single-source multicast: Let us now consider the case
where a single source stores the N segments that compose the
content object Cp, but multiple clients are interested in Cp, as
illustrated in Fig. 1b. In order to minimize the time needed
for each client to receive the complete set of segments that
compose Cp, while also minimizing the number of duplicated
transmissions of the same segment in the network, the segments
need to travel over cost-efficient multicast distribution trees [2].
Finding these trees in a distributed manner is a very complicated
task [2], which necessitates the knowledge of the network
topology. In CCN, this means that each node of the network
should know where each Interest ip,n should be forwarded
such that all the Interests for the segment cp,n from different
clients are aggregated in the optimal point in the network and
the number of duplicated transmissions of cp,n is minimized.
In the simple example shown in Fig. 1b, if all the clients
send the Interest ip,n over the LTE face, the segment cp,n
will be transmitted from the source to the LTE network and
then to the clients. However, if some of the clients decide to
send the Interest ip,n over the WiFi face, the segment cp,n
will also be transmitted from the source to the WiFi network,
wasting resources that could have been used to transmit another
segment.

• Multi-source multicast: Here we consider that multiple
clients are interested in content that is distributed across
multiple sources. In this case, content delivery through CCN
suffers from problems that appear in both the multi-source
unicast and the single-source multicast scenarios. This becomes
obvious considering the case presented in Fig. 1c. In this
case, both clients u1 and u2 need to coordinate where to send
each Interest, so that the Interests for the same segment are
aggregated in the node r4. Moreover, when the sources have
different sets of segments, i.e., Γs1

p 6= Γs2
p 6= Cp, the clients

also need to know what segments each source stores, in order to
avoid sending Interests over the face connecting them directly
to the source (i.e., the WiFi Network) that does not hold a
copy of the requested segment.

B. Enabling network coding in CCN

The shortcomings of the CCN architecture discussed in
Section III-A can be dealt with by enabling network coding [3],
a technique in which the segments delivered to the clients are
coded at sources and intermediate nodes. The key idea behind
introducing network coding in CCN is that clients no longer
need to request specific segments, but rather encoded segments

as they all have the same amount of information. This removes
the need to coordinate the forwarding of Interests and leads to
a more efficient use of the available network bandwidth.

Differently from the original CCN where an Interest message
ip,n requests a specific segment cp,n, in a network coding
enabled CCN variant an Interest message îp requests a coded
segment ĉp, without specifying a particular segment id. A
source or intermediate node can reply to these Interests with
network coded segments, generated by combining the segments
from its CS that match the name prefix p. In matrix form, this
can be expressed as ĉp = A ·CSp, where A is a vector of
coding coefficients drawn from a finite field, and CSp is a
vector of the segments from the node’s CS that match the prefix
p. When the coding coefficients in A are chosen uniformly at
random from a large enough finite field, the generated segments
have high probability of being linearly independent, and thus
innovative. Whenever a client interested in a content object
Cp collects N innovative coded segments ĉp, it can decode
the original segments that compose Cp.

To illustrate the benefits that network coding brings to CCN,
let us revisit the scenarios described in Section III-A.

• Multi-source unicast: Differently to the original CCN,
when network coding is allowed, the client and the intermediate
nodes do not need to know over which face they can reach a
particular source, since they send Interests for coded segments
rather than for specific segments. This implies that the FIB
tables of the clients and intermediate nodes do not need an
entry for each segment, but only a single entry for the name
prefix is enough. Each source then replies to these Interests
with coded segments ĉp, generated by combining the segments
that match the name prefix p.

• Single-source multicast: When network coding is allowed,
the clients do not need to coordinate what Interests they send
over each face, since all of them are for coded segments.
Thus, when all the clients send Interests îp requesting a coded
segment over a face (e.g., LTE), they will be aggregated by the
intermediate nodes, and only one Interest requesting a coded
segment will reach the source.

• Multi-source multicast: In this scenario, when network
coding is allowed, neither clients nor intermediate nodes need
to coordinate the forwarding of the Interests, since they are
for coded data and can be satisfied by any coded segment.

Network coding has also been shown to improve the
throughput when bottlenecks are present in the network and the
resiliency to packet erasures. In order to illustrate these benefits,
let us consider the scenario in Fig. 1c, commonly known as the
butterfly network. We consider that two clients are interested
in a content object Cp = {cp,1, cp,2} that is distributed across
both sources, such that the source node s1 holds a copy of
cp,1 (i.e., Γs1

p = {cp,1}) and the source node s2 holds a copy
of cp,2 (i.e., Γs2

p = {cp,2}). In this case, if network coding
is not enabled, the link between nodes r3 and r4 becomes a
bottleneck, since the only way in which the clients u1 and u2
can get cp,2 and cp,1 respectively is through node r4. Thus, the
Interests sent by the clients u1 and u2 cannot be aggregated

WiFi Network LTE Network

u1

Γp
s1 Cp

Γp
s2 Cp

Γp
s3 Cp Γp

s4 Cp

Γp
s5 Cp

Γp
s6 Cp

(a)

WiFi Network LTE Network

..
.

u1

un

Γp
s1 = Cp

(b)

u1

r2

r1

r4

r3

r6

r5

u2

W
iF

i N
et

w
o

rk
 1

W
iF

i N
et

w
o

rk
 2

LT
E

N
et

w
o

rk

Γp
s1 Cp Γp

s2 Cp

(c)

Fig. 1. Devices retrieving segments over LTE and WiFi: (a) multi-source unicast; (b) single-source multicast; (c) multi-source multicast (butterfly network).

in the node r4, since they are for different segments, and one
of the clients will receive the content with higher delay. In
contrast, when network coding is enabled, the Interests sent
by the clients u1 and u2 can be aggregated in the node r4, as
they are both for coded data. If the node r3 applies network
coding to the segments received from the sources, the resulting
coded segment will be useful for both clients u1 and u2.

C. Challenges

As discussed in Section III-B, enabling network coding in
CCN nodes brings benefits that can potentially improve the
performance of content object retrieval under certain scenarios.
However, some issues arise when the Interest messages do not
specify the segment id.

One of the issues that arises is that any node that has a single
coded segment ĉp cached in its CS will reply with this segment
to any Interest îp, as the name prefix in the Interest matches
that of the cached segment ĉp. This is undesirable, since the
intermediate nodes will always reply with the same cached
segment ĉp, while clients need to receive N innovative coded
segments in order to decode the original segments. Therefore,
the intermediate nodes need a way to determine when they
cannot provide a coded segment that is innovative to the client,
and thus a new coded segment has to be retrieved. In [4]
the authors propose to solve this problem by allowing the
clients to include information about the coded segments they
have collected so far. Intermediate nodes reply to an Interest
only if they can provide innovative information. However, it is
not clear how intermediate nodes can aggregate Interests with
different information from the clients.

Another challenge that emerges when network coding is
enabled in CCN is related to the pipelining procedure, i.e.,
a client sending multiple concurrent Interests for different
segments of the same content object. In the original CCN
when a node receives an Interest that it cannot satisfy with
content stored in its CS, the node checks its PIT. If the node
finds an entry in the PIT indicating that an Interest for the same
name has been received previously over the same face, it will
consider this new Interest as a duplicate and do not forward
it. Since Interests for different segments have different names,
as the segment id is appended to the name prefix, pipelining

is supported. However, when network coding is enabled in
CCN, concurrent Interests for different coded segments of the
same object have the same name. Therefore, pipelining is not
supported as the Interests will be considered duplicated.

These challenges are addressed in our practical implementa-
tion of NetCodCCN, presented in section IV.

IV. THE NETCODCCN PROTOCOL

In this section we present NetCodCCN, a practical implemen-
tation of a network coding enabled content-centric networking
protocol, based on the CCN architecture [1]. We start by
defining the content segmentation and naming scheme in the
proposed protocol. Then, we describe how Interests and Data
messages are processed in NetCodCCN.

A. Content Segmentation

As in the CCN protocol, in NetCodCCN the content objects
are split into smaller segments, Cp = {cp,1, . . . , cp,N}, that fit
into Data messages. Network coded segments ĉp,g are random
linear combinations of original segments with name prefix p.
Similarly to [9], g denotes the encoding vector associated with
the network coded segment ĉp,g. At the source nodes, network
coded segments are generated by randomly combining the set
of non-coded segments with name prefix p that are stored in
their CS. Thus, ĉp,g = A ·CSp =

∑L
l=1 al · cp,l where A =

a1, . . . , aL is a vector of coding coefficients randomly selected
from a finite field, CSp = {cp,1, . . . , cp,L} is the vector of
segments with name prefix p stored in the CS of the node, and
L = |CSp| is the size of the vector CSp, with L ≤ N . At
the intermediate nodes, network coded segments are generated
by randomly combining the set of coded segments with name
prefix p that are stored in their CS. Thus, ĉp,g =

∑L
l=1 al · ĉp,gl

.
The encoding vector g is generated as g =

∑L
l=1 al ·gl, where

gl is the coding vector associated with the lth segment. For
the special case when the lth segment is a non-coded segment,
the vector gl is a unit vector of size N that has value 1 in the
lth position and 0 otherwise.

The clients and intermediate nodes keep track of the received
innovative encoding vectors for prefix p in an encoding matrix
Gp = [g1; . . . ;gL], with L = |CSp|. This allows the original
set of segments to be retrieved at the clients by performing

Gaussian elimination when the matrix Gp is full rank. Since
the matrix Gp only contains linearly independent encoding
vectors, its rank can be computed as Rank(Gp) = L. Thus,
it is full rank when L = N .

The use of the encoding vectors introduces a communication
overhead which depends on the number of content segments.
To limit this overhead, we adopt the concept of generations [9],
according to which the original set of segments that compose
Cp is partitioned into smaller groups of segments, hereafter
called generations, and the coding operations are restricted
only between segments that belong to the same generation.
For example, let us consider that Cp is partitioned into K
generations of Hk segments each. Hence, the Hk segments of
the kth generation are denoted as Cp,k = {cp,k,1, ..., cp,k,Hk

},
where k is the generation id. The size of the generation,
Hk, controls the tradeoff between the decoding delay, the
segment diversity and the overhead required to communicate
the encoding vector. Overall, the encoding vectors do not
pose any limitations to our system as there are approaches to
compress them efficiently [10], [11]. In order to avoid mixing
segments from different generations, the segments are tagged
with the generation id.

B. Content Naming

From the discussion above, it is obvious that the nam-
ing in NetCodCCN should have two additional compo-
nents compared to the CCN protocol, namely the en-
coding vector g and the generation id k. For example,
let us consider a content object Cp with name p =
/provider/videos/largevideo.h264, that is parti-
tioned into K generations of Hk = 4 segments each. Thus,
in NetCodCCN the first segment of the kth generation, cp,k,1,
associated with the coding vector [1, 0, 0, 0], is named {p, k, 1}
= /provider/videos/largevideo.h264/k/1000.

For the sake of clarity, and without loss of generality,
hereafter we consider that the name prefix p in ĉp,g, contains
both the name prefix and the generation id. Note that, the
proposed naming scheme is compatible with the original CCN
and can support the delivery of non-coded segments.

C. Interest Message Processing

Similarly to CCN, in our protocol the data communication
is triggered by the clients who send Interest messages îp for
data with name prefix p. In the proposed NetCodCCN protocol,
the Interests have a NetworkCodingAllowed field that takes
the value “1” when network coded segments are expected,
otherwise, the field is not present or its value is set to “0”.
Nodes receiving an Interest with the NetworkCodingAllowed
field activated process the Interest messages following the
NetCodCCN procedure explained below and summarized in
Algorithm 1. Otherwise, the Interests are treated following the
original CCN procedures.

When a node v ∈ V receives an Interest îp for a network
coded segment over the face f , it either (i) replies to the Interest
with a coded segment generated with the set of segments CSp;
or (ii) forwards the Interest to other nodes in order to receive

Algorithm 1 Interest Processing in NetCodCCN

Require: îp, f , CSp ← segments that match p in the CS
1: if Rank(Gp) = N then {Generation is decodable}
2: ĉp,g ←

∑L
l=1 al · ĉp,gl

3: Send segment ĉp,g over face f
4: else
5: ξp,f = Rank(Gp)− σp,f

sent

6: if ξp,f > 0 then
7: ĉp,g ←

∑L
l=1 al · ĉp,gl

8: Send segment ĉp,g over face f
9: else

10: InsertPIT (p, f)
11: if σp

fwd ≤ σ
p,f
pend then

12: PropagateInterest(̂ip)
13: end if
14: end if
15: end if

a new linearly independent segment. This is further explained
in the following.

Replying to an Interest: The node v replies to an Interest
îp when (i) it has collected enough network coded segments to
decode the original set of segments Cp; or when (ii) a segment
generated by the node v has high probability to be innovative
for the node connected through the face f from where the
Interest arrived. The number of coded segments ξp,f that can
be generated by the node v and have high probability to be
innovate for the node connected through the face f , is given by
ξp,f = rank(Gp) − σp,f

sent. The parameter σp,f
sent denotes the

number of coded segment that have been previously sent over
the face f . When ξp,f is greater than 0, the node v generates
a new coded segment and sends it over the face f .

Forwarding an Interest: The node v forwards an Interest
îp to its neighbors when ξp,f is equal to 0, since it needs
a new segment that increases the rank of Gp before it can
reply to the Interest îp. As in CCN, prior to forwarding an
Interest the node v checks its PIT. However, in order to support
pipelining, in NetCodCCN the PIT verification procedure is
modified. Specifically, if the node finds a matching PIT entry
indicating that an Interest for the same name prefix p has been
previously received over the same face f , the Interest îp is
not considered duplicated, but it is treated as a request for an
additional network coded segment from the same face. This
means that the face f can appear multiple times in the PIT
entry for the name prefix p. To decide whether the Interest îp
should be forwarded, the node v computes the number νp of
innovative coded segments matching the name prefix p that it
expects to receive before the Interest îp expires. If νp > σp,f

pend,
where σp,f

pend is the number of Interests received over the face
f that are pending for a reply, the node v does not forward the
Interest îp, as it expects to receive enough coded segments to
satisfy all the pending Interests, including the received Interest
îp. Otherwise, if νp ≤ σp,f

pend, the node v forwards the Interest.
To compute the expected value of νp, the node v needs

Pending
faces

Prefix

fb

fc

Received
Interests

fa
fb
fc
fc

p

fa
ip
(t2)

ip
(t1)

ip
(t3)

ip
(t4)

time

ip
(t1)

In
faces

fz

fx

Out
faces

...

Forwarded
Interests

time

PIT (CCN)

Pending
faces

Prefix

fb

fc

Received
Interests

fa
fb
fc
fc

p

fa
îp
(t2)

îp
(t1)

îp
(t3)

îp
(t4)

time

îp
(t1)

In
faces

fz

fx

Out
faces

...

Forwarded
Interests

time

PIT (NetCodCCN)

îp
(t4)

DUP

AGG

AGG

FWD

FWD

FWD

AGG

AGG

Fig. 2. Comparison of the PIT in CCN and in NetCodCCN.

a probabilistic model that takes into consideration the loss
rate of the system and the delays that segments may suffer,
among other variables. For the sake of simplicity, we make
the assumption that nodes follow a simple model in which
any forwarded Interest brings an innovative segment before
its expiration. In this case, νp = σp

fwd, where σp
fwd is the

total number of Interests that have been forwarded by the
node v for the name prefix p. Thus, the node v forwards the
Interest if σp

fwd ≤ σ
p,f
pend. This assumption is close to the model

followed by CCN nodes, where Interests are not forwarded
if they match a PIT entry, since the previously sent Interest
is expected to bring the requested segment. This is because
the CCN nodes also consider that any forwarded Interest will
bring the requested segment before its expiration.

To further illustrate the difference in the processing of the
Interests between CCN and NetCodCCN, let us consider the
example presented in Fig. 2. In both CCN and NetCodCCN,
the first three Interests are processed in a similar way: the
Interest i(t1)p is forwarded and the Interests i(t2)p and i(t3)p are
aggregated. However, the Interest i(t4)p is processed differently
in both schemes: in CCN, it is considered duplicated since an
Interest for the same name has been received over the face
fc previously; while in NetCodCCN, the Interest is forwarded
since σp

fwd = σp,fc
pend = 1.

When a segment with name prefix p is removed from the
CS of node v (e.g., when the CS eviction policy decides that
segments of name prefix p needs to be removed from the
cache), the corresponding vector should also be removed from
Gp, and σp,f

sent needs to be decreased by 1 for all the faces.

D. Data Message Processing

The use of network coding in CCN also imposes modifica-
tions on the Data message forwarding procedure. Specifically,
when a node v ∈ V receives a coded segment ĉp,g over the face
f , it should determine whether the segment is innovative or not.
The segment ĉp,g is innovative for the node v if the encoding
vector g is linearly independent of the encoding vectors in Gp,
i.e., if it increases the rank of Gp. A non-innovative segment is

considered as a duplicated segment and therefore it is discarded
by the node v. When the segment ĉp,g is innovative, the node
v inserts it into its CS, and updates the encoding matrix Gp

that should now contain the received encoding vector g. Then,
the node v checks its PIT. If the node v finds a matching PIT
entry, meaning that an Interest with name prefix p is pending,
it generates a network coded segment ĉp,g′ =

∑L
l=1 al · ĉp,gl

and sends it once over each of the faces specified in the PIT
entry. It is important to note that since the face f may appear
multiple times in the PIT entry for the name prefix p, as a
consequence of allowing pipelining, a coded segment sent
over face f consumes only one of the appearances of f in the
corresponding PIT entry. If no matching PIT entry for the name
prefix p is found, the received coded segment is considered
unsolicited and it is not further transmitted. However, it can be
kept in the CS, according to the CS insertion policy, as it can
be useful to serve future Interests. This procedure is outlined
in Algorithm 2.

Algorithm 2 Content Processing in NetCodCCN
Require: ĉp,g

1: if g increases the rank of Gp then
2: Insert ĉp,g in the CS
3: PITp ← PIT entry for prefix p
4: if PITp 6= ∅ then
5: for all f in PITp do
6: if f has not been served then
7: ĉp,g′ =

∑L
l=1 al · ĉp,gl

8: Send segment ĉp,g′ over face f
9: σp,f

sent ← σp,f
sent + 1

10: Remove one appareace of f from PITp
11: end if
12: end for
13: end if
14: else
15: Discard ĉp,g
16: end if

It is important to note that network coding adds complexity
to both the Interest and Data message processing in NetCod-
CCN. Performing algebraic operations on the segments before
forwarding them adds, effectively, some complexity to the CCN
node. In particular, as we have seen in Section IV-A, a node
generates a new coded segment as ĉp,g =

∑L
l=1 al · ĉp,gl

. If
we consider that the operations are performed in a finite field
of size 28 and that segments are of size X symbols, each time
a node needs to generate a new coded segment, it performs
X ·L multiplications and X ·(L−1) additions. This complexity
does not pose limitations to our scheme as there are efficient
implementations of network coding [12]. Further, as it has
been shown in [13], a network coding coder and decoder can
operate at wire-speed with rates of up to 1000Mbps.

V. NETCODCCN EVALUATION

In this section, we evaluate the performance of NetCodCCN
in various scenarios, and compare the results to the performance

6 8 10
1

1.25

1.5

1.75

2

Bottleneck link capacity [Mbps]

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS
CCNx-PS
CCNx-DS

Fig. 3. Normalized delivery delay vs. the capacity
of the bottleneck link in the butterfly network.

2 5 10 15 20 25 30
1

1.25

1.5

1.75

2

Pipeline size

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS

Fig. 4. Normalized delivery delay vs. the pipeline
size in the butterfly network.

0 10 20 30
1

1.5

2

2.5

3

Error rate [%]

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS

Fig. 5. Normalized delivery delay vs. the error rate
in the butterfly network.

of the standard CCN. First, we describe the simulation setup.
Then, we evaluate the performance of NetCodCCN in the
butterfly network. This toy network provides a controllable
environment which permits to verify the expected behavior
of NetCodCCN, and facilitates the illustration of its benefits.
Finally, we present the simulation results in a more realistic
network topology, which is generated based on real network
measurements taken from the Planetlab project [14].

A. Simulation Setup

We implemented NetCodCCN by integrating the changes to
the CCN architecture described in Section IV into the CCNx
0.8.2 [8] code, and we compare its performance to that of the
unmodified CCNx. The network topology is simulated using the
NS-3 network simulator [15]. The software forwarders/routers
for CCNx and NetCodCCN are installed on NS-3 nodes using
the Direct Code Execution framework (DCE) [16].

We consider that the clients are interested in a content object
composed of N = 100 segments. The size of each segment
is 5KB. The segments are stored in a set of sources that are
connected to the clients through a network of intermediate
nodes. We consider that the intermediate nodes have sufficient
CS space to store all the incoming segments. We assume that
the N = 100 source segments comprise a single generation,
i.e., H = N and K = 1. The finite field in which the network
coding operations are performed is of size 28. In order to
evaluate our protocol in a challenging scenario, we consider
that all the clients send Interests during the same interval of
time. In this way, we demonstrate that by using our protocol,
the nodes are able to aggregate Interests adequately.

For the evaluation of CCNx, we consider the three main
Interest forwarding strategies implemented in CCNx 0.8.2, and
described in [17]:

• The default (DS) strategy selects the fastest responding
face based on the face statistics.

• The loadsharing (LS) strategy distributes the Interest
forwarding load over all the available faces, sending each
Interest over the face with the smallest pending Interest queue.

• The parallel (PS) strategy sends the Interests in parallel
over all the faces indicated in the FIB.
For the evaluation of NetCodCCN, we always consider the
parallel strategy, since by sending a single Interest over all

its faces the client can receive multiple useful (i.e., linearly
independent) segments.

To evaluate the performance of NetCodCCN, we measure
the time ∆tmeasured that a client needs in order to get
the N segments available at the sources. In the standard
CCN, ∆tmeasured is defined as the elapsed time between the
transmission of the first Interest and the reception of the N th
missing segment. In NetCodCCN, ∆tmeasured is defined as
the elapsed time between the transmission of the first Interest
and the reception of the N th linearly independent network
coded segment, which permits to decode the whole generation
of segments. We consider that clients can have heterogeneous
network resources, thus, in order to make a fair comparison
of the delivery delay, we define the normalized delivery delay
as d = ∆tmeasured/∆tmin, where ∆tmin is the theoretical
lower bound on the time that a client would need in order to
receive all the segments if it was alone in the network and was
able to receive at max-flow rate. Thus, a normalized delivery
delay equal to 1 means that the client was able to receive
the complete set of segments at the maximum rate. Note that
∆tmeasured ≥ ∆tmin, or equivalently, d ≥ 1 always holds.

B. Butterfly Topology

We begin by evaluating NetCodCCN in the butterfly topology
presented in Fig. 1c. We consider that every segment is stored
randomly in at least one of the two sources, and a copy of
the same segment is also placed in the CS of the other source
with a duplication probability φ ∈ [0, 1]. We set the capacity
of every link in the network to 5Mbps.

In the first set of experiments, we consider that φ = 1, i.e.,
both sources hold a copy of each segment in their CS. This
corresponds to the single source multicast case presented in
Section III-A. In this case, clients u1 and u2 can reach a copy
of any segment over any of their faces. However, as explained
in Section III-B, with the original CCN protocol the maximum
performance can be achieved only if both clients coordinate and
send Interest messages for the same segments over the faces
that connect them to the node r4. In contrast, when network
coding is employed, the need for coordination is eliminated,
since clients do not send Interests for a specific segment but
rather for any network coded segment.

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

Duplication probability φ [%]

N
or

m
al

iz
ed

de
la

y
(d

)
NetCodCCN
CCNx-LS
CCNx-PS

Fig. 6. Normalized delivery delay vs. source content
duplication probability in the butterfly network.

1 2 3 4 5
1

1.5

2

2.5

Number of clients

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS
CCNx-DS

Fig. 7. Normalized delivery delay vs. the number
of clients in the network in the PlanetLab topology.

0 2 4
1

1.5

2

2.5

3

3.5

Error Rate [%]

N
or

m
al

iz
ed

de
la

y
(d

)

NetCodCCN
CCNx-LS

Fig. 8. Normalized delivery delay vs. the segment
transmission error rate in the PlanetLab topology.

Fig. 3 depicts the normalized delivery delay as a function of
the capacity of the bottleneck link between the nodes r3 and r4.
We can see that NetCodCCN achieves the optimal performance
in the whole range of link capacity values. This is due to the
fact that network coding removes the need for coordinating
the forwarding of Interest messages. In contrast, the CCN
forwarding strategies perform poorly and only the LS strategy
can achieve the performance of NetCodCCN but it requires
significantly higher link capacity. When the bottleneck link has
the same capacity as all the other links, the average delivery
time d of CCNx-LS is approximately 1.2 times the minimum
delivery delay, ∆tmin. This is caused by the randomness
introduced by the LS strategy when choosing the faces over
which Interests are transmitted when all the faces have the
same load. This creates two extreme cases. In one case, all the
Interests sent by both clients to node r4 are the same, thus d
tends to one. In the other case, all the Interests are different,
thus d tends to 1.33. This happens because each node receives
2/3 of the segments through the link connecting them to the
sources, and 1/3 over the face connecting them to the node
r4, which means that 2/3 of the total segments travel on the
bottleneck link. With the DS and the PS strategies, the average
delivery time is close to 2, as expected. With the DS strategy,
the face connecting the clients to the sources is chosen as the
best, and thus most of the segments are received over that face.
With the PS strategy, each client forwards every Interest over
both faces, thus bringing one copy of each segment over each
face.

We now investigate how the number of concurrent Interests
that a client can send, also known as the pipeline size, affects the
performance in terms of the average normalized delivery delay.
As shown in Fig. 4, the performance of CCN is optimized for
a pipeline size value between 5 and 10, where the normalized
delivery delay seen by the clients is 1.2. This is due to the
fact that clients need to send at least 4 Interest messages over
the faces connecting them to the node r4 in order to create a
continuous flow of segments. Since the LS strategy distributes
the Interests over all available faces, a client has to send 4
Interests over each face while it also has sent 3 or 4 Interests
over the other face, which amounts to 7 or 8 Interests in total.
For smaller pipeline sizes, the continuous flow is not set, while
for larger pipeline sizes the number of Interests sent over the

bottleneck link increases, thus worsening the client coordination
problem. In contrast, the performance of NetCodCCN is not
affected by the pipeline size, as can be verified in Fig. 4. This
can be explained by the fact that NetCodCCN eliminates the
necessity that the clients request the same segments over the
bottleneck link. For the rest of the experiments, without loss
of generality, we choose a pipeline size of 10.

In Fig. 5, we depict the influence of the segment loss rate
on the performance of NetCodCCN and of the original CCN.
We consider losses that are caused both by the transmission
losses and the errors during the processing of the segments.
We can see that the performance of CCN with the LS strategy
degrades faster than the performance of NetCodCCN as the
segment error rate increases. This is caused by the fact that
in CCN, the client will be able to react to a segment loss
only when the corresponding Interest expires, since any earlier
re-transmission of an Interest with the same prefix will be
prevented by the PIT. Instead, with NetCodCCN, the clients
can send Interests for new coded segments until they have a
sufficient number of coded segments in order to recover the
original ones. It is important to note that the maximum amount
of concurrent Interests that a client can send is controlled by
the pipeline size.

Finally, we evaluate the performance of NetCodCCN for dif-
ferent values of the duplication probability φ. This corresponds
to the multi-source multicast case presented in Section III-A. In
CCNx, when φ < 1, the clients should not only coordinate the
requests sent over the bottleneck link as in the previous scenario,
but they also should have the knowledge of the segments that
each source stores, in order to avoid sending Interests over the
face connecting them directly to the source that does not hold
a copy of the requested segment. In Fig. 6, we can see that
CCN with the LS strategy takes 3.4 times longer to deliver
all the segments to the clients, when each segment is stored
only in one of the sources. When the PS strategy is employed,
the clients do not need to know how the content is distributed
since each Interest message is sent over both faces. However,
since a copy of every segment cross the bottleneck link, the
traffic over the bottleneck link is doubled compared to the
network coding case. When the probability that the segments
are stored in both sources increases, the performance of CCNx
with the LS strategy improves, but eventually saturates at 1.2

Source

23

25

1

2

3

4

5

6

7

9

10

11

13

20
21

22

24

8

12
14

15

16
19

17

18

Fig. 9. Planetlab topology used.

times the minimum delay, which is consistent with the results
depicted in Fig. 4.

C. Planetlab Topologies
We now evaluate our protocol in more realistic network

topologies captured by the PlanetLab project [14]. We use
the network topology shown in Fig. 9 that consists of one
source node, 5 client nodes and 20 intermediate nodes. The
links connecting the nodes have a capacity of 12Mbps. The
topology was generated using the procedure described in [18].
We measure the normalized delivery delay d for each client
and then compare its average.

First, we investigate how the performance is affected by the
number of clients in the network. In Fig. 7, we can see that
with a single client (in this case node 24), NetCodCCN and
CCNx perform similarly. In this case, network coding does not
introduce any gains since there is only one client in the network
and no losses are considered. However, the performance of
CCNx starts to degrade with the introduction of more clients,
as they start to compete for the network resources. In contrast,
we can see that the performance of NetCodCCN does not
deteriorate with the addition of new clients to the network
topology. These results show that the NetCodCCN protocol
uses more efficiently the available network resources.

We also evaluate how the error in segment transmission
affects the performance of the NetCodCCN for larger topolo-
gies. For this evaluation, we choose to keep only one client,
in order to compare the results with the performance of the
CCN. As with the butterfly topology, we consider losses that
are caused both by transmission losses and errors introduced
during the processing of the segments. In Fig. 8, we can see
that NetCodCCN maintains the delivery delay close to the
expected one, while the performance of CCN degrades very
fast with the introduction of errors. As in the butterfly topology,
this fast degradation is due to the fact that when a segment is
lost, the client needs to wait until the corresponding Interest
expires before it can re-send a new one.

VI. CONCLUSIONS

In this paper, we have presented NetCodCCN, a protocol that
integrates network coding in CCN. In NetCodCCN, the clients

express Interest messages for coded segments of a given prefix
instead of asking a specific segment as in CCN. The network
nodes combine the Data messages by means of RLNC before
forwarding them in order to take advantage of the network
diversity. Our protocol is able to (i) simplify the aggregation of
Interests for coded content; (ii) reduce the number of duplicate
segments; and (iii) allow clients to send multiple Interests for
the same content in parallel. The overall system has been tested
in networks with multiple clients and sources, where we have
observed large performance gains in terms of the time needed
to retrieve the demanded content.

Our future research includes the investigation of optimal
Interest forwarding strategies that enable flow control in the
case of multiple different content objects. We will also consider
the transmission of video content characterized by strict delivery
deadlines. Furthermore, we will focus on enabling content
security in NetCodCCN.

ACKNOWLEDGMENT

This work has been partially funded by the Swiss National
Science Foundation under grant number 149225.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in ACM CoNEXT’09,
Dec. 2009.

[2] Y. Wu, P. Chou, and K. Jain, “A Comparison of Network Coding and
Tree Packing,” in IEEE ISIT’04, Jun. 2004.

[3] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network Information
Flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[4] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network Coding Meets
Information-Centric Networking: An Architectural Case for Information
Dispersion Through Native Network Coding,” in 1st ACM NoM Workshop,
Jun. 2012.

[5] J. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher,
and J. Barros, “Network Coding Meets TCP: Theory and Implementation,”
Proc. IEEE, vol. 99, no. 3, pp. 490–512, Mar. 2011.

[6] Q. Wu, Z. Li, and G. Xie, “CodingCache: Multipath-Aware CCN Cache
with Network Coding,” in 3rd ACM ICN Workshop, Aug. 2013.

[7] J. Llorca, A. Tulino, K. Guan, and D. Kilper, “Network-Coded Caching-
Aided Multicast for Efficient Content Delivery,” in IEEE ICC’13, Jun.
2013.

[8] “CCNx R©, version 0.8.2,” http://www.ccnx.org/releases/ccnx-0.8.2/doc/.
[9] P. Chou and Y. Wu, “Network Coding for the Internet and Wireless

Networks,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 77–85, Sep.
2007.

[10] N. Thomos and P. Frossard, “Toward one Symbol Network Coding
Vectors,” IEEE Commun. Lett, vol. 16, no. 11, pp. 1860–1863, Nov.
2012.

[11] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek, “Fulcrum
Network Codes: A Code for Fluid Allocation of Complexity,” available
at http://arxiv.org/abs/1404.6620, 2014.

[12] M. Pedersen, J. Heide, P. Vingelmann, and F. Fitzek, “Network coding
over the 232 − 5 prime field,” in IEEE ICC’13, Jun. 2013.

[13] M. Zhang, H. Li, F. Chen, H. Hou, H. An, W. Wang, and J. Huang, “A
general co/decoder of network coding in hdl,” in 2011 Intl. Symp. on
Network Coding, Jul. 2011.

[14] “PlanetLab,” https://www.planet-lab.org/.
[15] “The network simulator - ns3,” http://www.nsnam.org/.
[16] “Direct Code Execution (DCE),” https://www.nsnam.org/overview/projects/

direct-code-execution/.
[17] “CCNDC(1) Manual Page, Project CCNx R©, version 0.8.2,”

https://www.ccnx.org/releases/ccnx-0.8.2/doc/manpages/ccndc.1.html.
[18] N. Cleju, N. Thomos, and P. Frossard, “Selection of Network Coding

Nodes for Minimal Playback Delay in Streaming Overlays,” IEEE Trans.
Multimedia, vol. 13, no. 5, pp. 1103–1115, Oct 2011.

